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Abstract
Collaborative filtering algorithms take into account users’ tastes and interests, expressed as ratings, in order to formulate

personalized recommendations. These algorithms initially identify each user’s ‘‘near neighbors,’’ i.e., users having highly

similar tastes and likings. Then, their already entered ratings are used, in order to formulate rating predictions, and

predictions are typically used thereafter to drive the recommendation formulation process, e.g., by selecting the items with

the top-K rating predictions; henceforth, the quality of the rating predictions significantly affects the quality of the

generated recommendations. However, certain types of users prefer to experience (purchase, listen to, watch, play) items

the moment they become available in the stores, or even preorder, while other types of users prefer to wait for a period of

time before experiencing, until a satisfactory amount of feedback (reviews and/or evaluations) becomes available for the

item of interest. Notably, a user may apply varying practices on different item categories, i.e., be keen to experience new

items in some categories while being uneager in other categories. To formulate successful recommendations, a recom-

mender system should align with users’ patterns of practice and avoid recommending a newly released item to users that

delay to experience new items in the particular category, and vice versa. Insofar, however, no algorithm that takes into

account this aspect has been proposed. In this work, we (1) present the Experiencing Period Criterion rating prediction

algorithm (CFEPC) which modifies the rating prediction value based on the combination of the users’ experiencing wait

period in a certain item category and the period the rating to be predicted belongs to, so as to enhance the prediction

accuracy of recommender systems and (2) evaluate the accuracy of the proposed algorithm using seven widely used

datasets, considering two widely employed user similarity metrics, as well as four accuracy metrics. The results show that

the CFEPC algorithm, presented in this paper, achieves a considerable rating prediction quality improvement, in all the

datasets tested, indicating that the CFEPC algorithm can provide a basis for formulating more successful recommendations.

Keywords Recommender systems � Rating prediction accuracy � Collaborative filtering � Experiencing period criterion �
Ratings’ timestamps � Pearson correlation coefficient � Cosine similarity � Evaluation

1 Introduction

Collaborative filtering (CF) targets at formulating person-

alized recommendations by taking into account user opin-

ions on items expressed as ratings. CF algorithms are

distinguished into two main categories, the user-based (or

user–user) and item-based (or item–item). User-based CF

algorithms initially examine the resemblance of already

entered user ratings on items, in order to identify people

who share similar likings, tastes, and opinions—these users

are termed as ‘‘near neighbors’’ (NNs)—who will act as

potentially recommenders to a user U, since U’s recom-

mendations formulation will be based on their ratings [1].

Finally, the recommendation of an item I is the result of the

prediction the user-based CF algorithm will produce for

this item, which is based on: (1) the similarity between user

U and his NNs and (2) the ratings that U’s NNs have

entered for item I [2].
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However, certain types of users prefer to experience

items (we will henceforth use the word ‘‘experience’’ to

substitute the cases of ‘‘purchasing,’’ ‘‘listening,’’

‘‘watching,’’ ‘‘playing,’’ ‘‘tasting,’’ etc.) the moment they

become available in the stores, or even preorder (e.g., an

iPhone, the Microsoft Flight Simulator, a pair of shoes, or

an expensive red wine). Other types of buyers prefer to

wait for a period of time before ordering; the period may

vary depending on the item category—e.g., a smartphone

buyer may wait for a couple of months, while a car buyer

may wait for a whole year, or even more—until a satis-

factory amount of feedback (reviews and/or evaluations)

becomes available for the item of interest [3]. Marketing

research has recognized this consumer behavior at least

three decades ago: in [4] adopters of new products are

classified in five categories depending on their experienc-

ing wait period (EWP): innovators; early adopters; early

majority; late majority; and laggards (in increasing order of

EWP). Since the introduction of this classification, many

researchers have studied different related attributes of

customer’s behavior and/or factors specific to particular

customer categories or market segments [5–8]. Taking the

above information into account, recommender systems

(RSs) should try to align their recommendations with the

users’ patterns of practice, arranging so that users with

small EWPs receive recommendations for newly released

products, while refraining from presenting such recom-

mendations to users with long EWPs.

In this paper, we address the aforementioned problem by

(1) introducing the concept of the Experiencing Period

Criterion (EPC), as well as (2) presenting a related algo-

rithm, namely CFEPC, which modifies the rating prediction

value based on the combination of the users’ usual expe-

riencing time period in a certain item category and the

item’s period the rating to be predicted belong to, in order

to enhance the rating prediction accuracy of CF-based RSs.

In order to validate the rating prediction accuracy of the

CFEPC algorithm proposed in this work, we conduct an

extensive evaluation, using seven contemporary and widely

used datasets from various product categories (books,

music, movies, videogames, etc.), considering the two most

widely used similarity metrics in CF research, namely the

Pearson Correlation Coefficient (PCC) and the Cosine

Similarity (CS) [1, 2]. To measure the algorithm’s pre-

diction accuracy, we employ four rating prediction error

metrics, including the two most widely used ones in CF

research, the Mean Absolute Error (MAE) and the Root

Mean Squared Error (RMSE) [1, 2]. We also compare the

performance of the CFEPC algorithm against the perfor-

mance of:

(a) The Common Item Rating Past Criterion-based

algorithm (denoted as CFCIRPaC), proposed in [9],

which exploits the ratings’ timestamps to adjust the

significance of rating (di)similarity for an item

among two users according to the resemblance

between the set of experiences that each of the users

had before rating the item.

(b) The Early Adopters algorithm (denoted as CFEA),

proposed in [10], which also adjusts the significance

of rating (di)similarity for an item among two users,

however on a different basis. More specifically, the

CFEA algorithm introduces an adoption eagerness

likeness factor between two ratings for the same

item, boosting the importance of (di)similarities

between ratings that belong to the same experiencing

period of the item (early or late) and attenuating this

importance when the ratings belong to different

experiencing periods.

Furthermore, the CFCIRPaC and the CFEA algorithms

have been published recently, being thus within the state-

of-the-art in the field of collaborative filtering, have been

shown to surpass the performance of other state-of-the-art

CF algorithms.

All three algorithms (the proposed CFEPC, the CFCIRPaC,

and the CFEA) are based only on the very basic CF infor-

mation (no item categories and characteristics, no social

relations between users, no demographic data, etc.), which

is comprised only of user ratings on items, including the

time of the rating, and consequently can be used by every

CF-based recommender system.

The proposed methodology achieves considerable

improvements considering rating prediction accuracy and

recommendation quality and outperforms recently pub-

lished algorithms. This is achieved because, unlike the

CFCIRPaC [9] and the CFEA [10] algorithms that undertake a

fine-grained approach to adjust the importance between

already entered rating (di)similarities, the CFEPC algorithm

proposed in this paper takes a different approach, adjusting

the value of the prediction by a factor corresponding to the

perceived utility of the item to the user, according to the

item ‘‘freshness’’ and the typical EWP of the user, as the

latter is derived by the ratings s/he has already entered in

the user-item ratings database. This shift of focus has been

shown experimentally to lead to improved rating prediction

accuracy.

Finally, it is worth noting that the CFEPC algorithm

presented in this work, can be combined with other works

in the domain of CF, targeting either to: (a) increase rating

prediction computation efficiency, (b) enhance rating pre-

diction accuracy, or (c) improve recommendation quality

in CF-based RSs. Such works include concept drift detec-

tion techniques [11–14], clustering techniques [15–17],

algorithms which exploit social network data [5, 6], or

hybrid filtering algorithms [18–20].
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The rest of the paper is structured as follows: Sect. 2

overviews related work, while Sect. 3 introduces the CFEPC
algorithm. Section 4 reports on the methodology for tuning

the algorithm operation, as well as evaluates the presented

algorithm using seven contemporary and widely used CF

datasets, and, finally, Sect. 5 concludes the paper and

outlines future work.

2 Related work

CF-based systems’ accuracy is a research field targeted by

numerous research works [21, 22] over the last years, and

many features of the ratings database or external linked data

sources, wherever available, have been taken into consid-

eration for improving rating prediction accuracy [18, 23].

[24] recognizes three types of similar users (super dis-

similar, average similar, and super similar), by combining

traditional similarity metrics. It also presents a new simi-

larity metric that is used in the case of average similar user

pairs and evaluates the presented recommendation method

by experimenting with data derived from Movielens and

Epinions datasets. [25] proposes a neural network-based

recommendation framework, which targets to issue of the

RSs efficiency by investigating sampling strategies in the

stochastic gradient descent training for the framework. It

also establishes a connection between the user-item inter-

action bipartite graph and the loss functions, where the

latter are defined on links, while the graph nodes include

major computation burdens. [26] proposes an RS algorithm

which achieves to improve rating prediction quality by

taking into account the users’ ratings variability when

computing rating predictions. Matrix factorization (MF)

techniques [27] constitute an alternative approach to

computing rating predictions for users. As noted in [28],

MF-based RS algorithms always produce predictions for

users ratings on items; however, when these techniques are

applied to sparse datasets, the predictions involving items

or users which do not have a sufficient number of ratings

actually degenerate to a dataset-dependent constant value,

and hence are not considered as personalized predictions

[29] a phenomenon reflected into the rating prediction

accuracy of the algorithm.

A different approach targeting the rating prediction

accuracy improvement is the knowledge-based CF sys-

tems. [30] presents a context-aware knowledge-based

mobile RS, namely RecomMetz, which targets the domain

of movie showtimes based on multiple features such as

time, location, and crowd information. RecomMetz con-

siders the items to be recommended as composite entities,

with the most important aspects of them being the movie,

the theater, as well as the showtime. [31] proposes a

knowledge-based CF system which produces leisure time

suggestions to Social Network (SN) users. The presented

algorithm considers the profile and habits of the users,

qualitative attributes of the items-places, such as price,

service, and atmosphere, places similarity, the geographical

distance between the places’ locations, as well as the users’

influencers’ opinions.

Many works identified that SN information can be

incorporated in a CF-based system, in order to upgrade

rating prediction accuracy. [32] proposes an SN memory-

based CF algorithm and examines the impact of incorpo-

rating social ties in the rating prediction formulation, tar-

geting rating prediction accuracy. Furthermore, in order to

tune the contribution of the SN information, it uses a

learning method in the presented similarity measure, as a

weight parameter. [17] presents a clustering approach to

CF recommendation that, instead of using rating data,

exploits relationships between SN users in order to identify

their neighborhoods. Furthermore, the algorithm applies a

complex network clustering technique on the SN users, in

order to formulate similar user groups and then, uses tra-

ditional CF algorithms in order to generate the recom-

mendations. [33] proposes an algorithm that targets SN

RSs which operate using sparse user-item rating matrixes

and sparse SN graphs. For each user, this algorithm com-

putes partial predictions for item ratings items from both

the user’s CF neighborhood and SN neighborhood, which

are then combined using a weighted average technique.

The weight is adjusted to fit the characteristics of the

dataset, while for users having no CF (resp. SN) near

neighbors, item predictions are based only on the respec-

tive user’s social neighborhood (resp. CF neighborhood).

Although all the aforementioned approaches successfully

improve CF prediction accuracy, the improvement is based

on information found in complementary information

sources (e.g., an SN), which is not always available.

Recent research has shown that the exploitation of the

time parameter in the rating prediction formulation process

can significantly improve CF systems rating prediction

accuracy, due to the concept drift phenomenon (when the

relation between the input data and the target variable

changes over time) [34]. A fuzzy user-interest drift detec-

tion recommender algorithm, which adapts to user-interest

drift in order to improve rating prediction accuracy, is

introduced in [35], while [36] builds a Bayesian personal-

ized ranking algorithm which takes into account the user

behavior temporal dynamics and price sensitivity. The

work in [37] presents a concept drift MF algorithm for

tracking concept drift, by developing a modified stochastic

gradient descent method. The work in [38] introduces an

algorithm which by taking into account users rating

abstention intervals improves the rating prediction accu-

racy, proving that the periods of users rating inactivity may

often indicate a shift of user interest.

Neural Computing and Applications

123



Pruning techniques, based on the time the ratings have

assigned to the items, have also been proposed [28, 39], in

order to eliminate aged ratings from the ratings database, in

the sense that they fail to reflect users’ current trends, and

hence they contribute to the formulation of high error

predictions.

Recently, the work in [9] has introduced the Common

Item Rating Past Criterion (CIRPaC), which increases the

similarity between user U, for whom a prediction is being

formulated, and his NN user V, when they have experi-

enced and rated common content before assigning a rating

to the item i for which a prediction is being formulated.

Furthermore, the work in [10] proposes the ‘‘early adop-

ters’’ algorithm which improves rating prediction quality,

by taking into account the eagerness shown by consumers

to purchase and rate items. The ‘‘early adopters’’ algorithm

regulates the weight that each NN’s V rating for an item

i affects the rating prediction for that item formulated for a

user U, depending on whether V and U exhibit similar

levels of eagerness to adopt item i or not.

However, none of the above-mentioned works takes into

account the information of the experiencing period (Early

or Late) in which the users’ usual experiencing time and

the time of their rating to be predicted belong. The present

paper fills this gap by presenting an algorithm that ampli-

fies or diminishes the prediction value produced by a CF

system, based on whether the aforementioned rating times

belong to the item’s same (common) period or not,

respectively, and assesses its performance using (a) two

similarity metrics, (b) two error metrics, as well as

(c) seven widely used CF datasets.

3 The proposed algorithm

CF algorithms consist of two main steps for the formula-

tion of a prediction for a user U. The first step is to identify

U’s NNs (the set of users who will act as recommenders to

user U), while the second step is to compute the person-

alized predictions for U, based on the ratings of these NNs.

The set of U’s NNs, denoted as NNU, consists of users

that have rated items similarly to U; typically, the quanti-

fied rating similarity is required to exceed some threshold,

e.g., the value 0 for the PCC. The similarity metric between

two users U and V is typically quantified using the PCC

[1, 2], which is expressed as follows:

sim p U;Vð Þ ¼
P

k rU;k � rU
� �

� rV ;k � rV
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k rU;k � ru
� �2�

P
k rV;k � rV
� �2

q ð1Þ

where k is the set of items both being rated by users U and

V, while ru and rV are the mean values of ratings entered by

users U and V in the rating database, respectively.

Similarly, the CS metric [1, 2] is expressed as follows:

sim cs U;Vð Þ ¼
P

k rU;k � rV ;k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

k rU;k

� �2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

k rV ;k
� �2

q ð2Þ

Subsequently, in order to compute a rating prediction

pU,i for the rating that user U would assign to item i, the

following formula [1, 2] is applied:

pU;i ¼ ru þ
P

V2NNu
sim U;Vð Þ � rV ;i � rV

� �

P
V2NNu

sim U;Vð Þ ð3Þ

where sim(U,V) is either sim_p(U,V) (equation 1) or

sim_cs(U,V) (equation 2), depending on the similarity met-

ric utilised. The proposed algorithm modifies the prediction

computation formula (3), by accommodating an adjustment

that is based on the relation between (a) the experiencing

period for item i that the computed prediction to be made

belongs to and (b) the user-specific EWP for items. More

specifically, the formula (3) is modified as follows:

ptU;i ¼ ru þ
P

V2NNu
sim U;Vð Þ � rV ;i � rV

� �

P
V2NNu

sim U;Vð Þ þ EWP adj U; i; tð Þ

ð4Þ

where factor EWP adj U; i; tð Þ is an adjustment (positive/

bonus or negative/malus) assigned to each prediction,

based on (a) the time t at which the prediction is computed,

(b) the lifespan of item i, and (c) user U’s usual EWP (short

or prolonged) for item i’s category. The EWP adj U; i; tð Þ
factor aims to try to align their recommendations with the

users’ patterns of practice, arranging so that users with

small EWPs receive recommendations for newly released

products, while refraining from presenting such recom-

mendations to users with long EWPs; and conversely for

products which have been released before a considerable

amount of time.

The rationale behind the inclusion of the

EWP adj U; i; tð Þ factor in the rating prediction formula is

that when a user U usually waits for a period of time before

experiencing items (cars, mobile phones or an innovative

product, in general), in order to get useful product reviews

from other users, an RS which recommends to him a pro-

duct that it has just been released, will probably lead to an

unsuccessful recommendation and vice versa. Note that the

notation for the prediction in formula (4) is extended to

include the time t at which the prediction is computed: this

is in-line with the rationale presented above, since the

perceived utility of the item to the user may increase or

decrease along the time axis, since—for instance—a user

categorized as an ‘‘innovator’’ is not expected to be inter-

ested in products that are already present in the market for

a long time.

In order to compute the value of the EWP adj U; i; tð Þ
factor, the following information is required:
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• Each item’s effective lifespan ELi, i.e., the period

between the item’s release date reli, and the item’s end-

of-life date eoli. If the item’s release date or end-of-life

dates are unavailable, they are estimated following the

method introduced in [10], where the product’s lifespan

is assumed to begin when the first rating assigned for

this item enters the ratings database. Respectively, the

end of the item’s effective lifespan is set to the

timestamp of the last rating present in the database: for

products that are actively consumed and rated, this will

be close to the present time point, while for retired

products this corresponds to the time point beyond

which consumers have shown no interest for the

product. Value normalization is performed according

to the standard minmax formula.

• The early experiencing period for each item i, denoted

as EEPi, is a period that is deemed to be close to the

beginning of the item’s effective lifespan. EEPi starts at

the item’s release date reli, whereas the end of EEPi is

set to a percentage of the duration of the item’s lifespan;

this percentage is the early experiencing period

threshold (EEPT), and its optimal value is determined

experimentally in Sect. 4. Formally,

EEPi ¼ reli; reli þ eoli�relið Þ � EEPT½ � ð5Þ

where EEPT [ [0, 1].

• The late experiencing period for each item i, denoted as

LEPi, is a period that is deemed to be close to the end of

the item’s effective lifespan. LEPi ends at the item’s

end-of-life date eoli, while its beginning is set to a

percentage of the duration of the item’s lifespan; this

percentage is the late experiencing period threshold

(LEPT), and its optimal value is determined experi-

mentally in Sect. 4. Formally

LEPi ¼ eoli � eoli�relið Þ � LEPT ; eolið � ð6Þ

where LEPT [ [0, 1]. Additionally, since EEPi and LEPi
must not overlap, it follows that

EEPT þ LEPT � 1 ð7Þ

If (EEPT ? LEPT = 1), then the item’s lifespan is

partitioned into two experiencing periods, the early and

the late one, with no time gap between them. If, how-

ever, (EEPT ? LEPT\ 1), then a time gap exists

between EEPi and LEPi, which is deemed to be a

‘‘neutral’’ period, in the sense that it is not classified

either as early, or as late.

• The normalized timestamp of rating rU,I is denoted as

NT(rU,i); this quantity refers to the amount of time that

has elapsed until user U has rated the item i, normalized

to the item i’s effective lifespan ELi. Formally, NT(rU,i)

is expressed as follows:

NT rU;i

� �
¼ timestampðrU;iÞ � reli

eoli � reli
ð8Þ

Similarly, we can also compute the normalized time

for a prediction pU,i, by considering its timestamp to be

equal to the time at which its computation took place.

• User U’s mean experiencing time (MET(U)): this

quantity refers to the mean value of the normalized

timestamps of U’s ratings. A value close to 0 indicates

that U tends to experience items immediately as they

become available (thus U belongs to the innovators

category identified in [4]), while a value close to 1

indicates the exact opposite practice (classifying thus

U to the laggards category listed in [4]). Formally,

MET(U) is expressed as follows:

MET Uð Þ ¼
P

r2R Uð Þ NT rU;i

� �

RUj j ð9Þ

where R(U) denotes the set of ratings that have been

entered by user U.

Using the quantities above, the EWP adj U; i; tð Þ factor
is defined as shown in Eq. (10):

Effectively, the first branch of Eq. (10) computes a

positive value, equal to CEPB (Common Experiencing

Period Bonus) for factor EWP adj U; i; tð Þ when either

(a) the time at which the prediction is computed falls

EWP adj U; i; tð Þ ¼
CEPB; if ðt 2 EEPi ^MET Uð Þ\EEPTÞ _ ðt 2 LEPi ^MET Uð Þ[ 1� LEPT)

�DEPM; if ðt 2 EEPi ^MET Uð Þ[ 1� LEPTÞ _ ðt 2 LEPi ^MET Uð Þ\EEPTÞ
0; otherwise

8
<

:
ð10Þ
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within the item’s early experiencing period and the user

has exhibited an eagerness to experience items or (b) the

time at which the prediction is computed falls within the

item’s late experiencing period and the user has exhibited

un-eagerness to experience items. Thus, the predictions for

‘‘fresh’’ items are boosted for ‘‘early adopters,’’ and so are

the predictions for ‘‘mature’’ items for ‘‘late adopters.’’

Conversely, the second branch computes a negative

value, equal to DEPM (Dissimilar Experiencing Period

Malus) for factor EWP adj U; i; tð Þ when either (a) the time

at which the prediction is computed falls within the item’s

early experiencing period and the user has exhibited un-

eagerness to experience item or (b) the time at which the

prediction is computed falls within the item’s late experi-

encing period and the user has exhibited an eagerness to

experience item. Thus, the predictions for ‘‘fresh’’ items

are lowered for ‘‘late adopters,’’ and so are the predictions

for ‘‘mature’’ items for ‘‘early adopters.’’

Finally, the third branch concerns predictions that are

formulated in item’s ‘‘neutral’’ periods (i.e., neither within

EEPi and nor within LEPi), as well as predictions formu-

lated for users which are neither early nor late adopters; for

such cases, the prediction rating computed by Eq. (3) is left

intact.

Table 1 summarizes the algorithm parameters and

notations introduced above.

Listing 1 presents the CFEPC algorithm introduced in

this paper, and more specifically the rating prediction for-

mulation function (realizing formula (4)) as well as the

computation of the EWP_adj parameter (formula (10)).

Table 1 Algorithm parameters and notations

Parameter/notation Description

EWP_adj(U,i,t) An adjustment for the prediction of rU,I, with the prediction being computed at time t

ELi The effective lifespan of item i

EEPi The early experiencing period for item i

EEPT The early experiencing period threshold

LEPi The late experiencing period for item i

LEPT The late experiencing period threshold

NT(rU,i) The timestamp of rating rU,i normalized to the item’s effective lifespan ELi

MET(U) The mean experiencing time for user U

CEPB The Common Experiencing Period Bonus, boosting a predicted rating’s value

DEPM The Diverse Experiencing Period Malus, demoting a predicted rating’s value

Neural Computing and Applications

123



Neural Computing and Applications

123



For the application of this algorithm, the parameters

EEPT, LEPT, CEPB, and DEPM, listed above, need to be

determined. The setting of these parameters to their opti-

mal values is explored experimentally in the following

section, where the evaluation of the CFEPC algorithm is

also presented.

4 Algorithm tuning and experimental
evaluation

In the following section, we report on our experiments

aiming to:

1. Determine the optimal values for parameters EEPT,

LEPT, CEPB, and DEPM, in order to tune the CFEPC
algorithm and

2. Assess the rating prediction accuracy achieved by the

CFEPC algorithm, to quantify the gains obtained due to

the consideration of the Experiencing Period Criterion.

3. Compare the performance of the CFEPC algorithm

proposed in this paper, against the performance of the

CFCIRPaC algorithm presented in [9], and the CFEA
algorithm proposed in [10], which are also based only

on the very basic CF information, comprising only user

ratings on items, including the time of the rating, so

that it can be used by every CF-based recommender

system. In all comparisons, the performance of the

plain CF algorithm is used as a baseline. Both the

CFCIRPaC and the CFEPC algorithm are recently (2019)

published state-of-the-art CF algorithms which addi-

tionally (a) aim at increasing the rating prediction

accuracy through the exploitation of experiencing

times and (b) necessitate no external information

(e.g., consumers’ text reviews or user relationships

sourced from SNs).

In order to quantify the rating prediction quality, both

the MAE and the RMSE [1, 2] error metrics have been

employed, used in the majority of the works targeting at

rating prediction computation, e.g., [40–44]. The reason

behind the use of two error metrics is that while the MAE is

a linear score (i.e., all the individual differences are

weighted equally in the average), the RMSE is a quadratic

scoring metric, which gives a relatively high weight to

large errors.

In order to evaluate the algorithms’ rating prediction

MAE and RMSE scores, we exercised the standard ‘‘hide

one’’ technique [1, 2, 9]: each time a particular rating in the

database was hidden and then its value was tried to be

predicted based on the values of other, non-hidden ratings;

this process was repeated for each rating in the database.

Additionally, a second experiment was performed, where,

for each user, only his last rating (based on the ratings’

timestamps) was hidden, and again its value was predicted

based on the other, non-hidden, ratings. The above two

experiments gave very similar results (the differences

observed were less than 2.5% in all cases); hence, we

report only on the results of the first experiment, for con-

ciseness purposes. Furthermore, we believe that the first

experiment gives a more comprehensive insight into the

algorithm’s performance since the latter experiment is

biased to computing predictions that lie within the items’

LEP.

To validate the significance of the MAE and RMSE

reduction results, we conducted statistical significance

tests, across all datasets, between the CFEPC algorithm,

presented in this paper and each one of the CFCIRPaC and

CFEA algorithms, used in the comparison.

Furthermore, in this paper, two additional error metrics

have been employed for further quantifying the rating

prediction quality: (a) the percentage of the cases an

algorithm formulates the prediction closest to the real rat-

ing, namely ‘‘closest prediction,’’ and (b) the above-rec-

ommender-threshold F1-measure values of the formulated

predictions, following the approach utilized in [45, 46].

All our experiments were executed on seven datasets.

Five of these datasets have been obtained from Amazon

[47, 48], while the remaining two have been sourced from

MovieLens [49, 50]. Some of the datasets are relatively

sparse (such as the Amazon ‘‘Books,’’ whose density is

equal to 0.004%), while some of them are relatively dense

(such as the Amazon ‘‘Office Supplies,’’ with its density is

equal to 0.448%). The reason behind testing both sparse

and dense datasets is to establish the applicability of the

CFEPC algorithm in every dataset. It has to be mentioned

that we have used the exact same datasets against which the

CFCIRPaC [9] and CFEA [10] algorithms were tested; how-

ever, in this paper, we have used their respective 5-core

datasets (in which each of the remaining users and items

has at least 5 ratings). The reason for this change is that in

many cases (5–15% in each of the Amazon datasets) pre-

dictions could not be formulated due to the fact that the

rating to be predicted was the only one recorded for that

particular item within the database, hence neither the EEP

nor the LEP could be set. Furthermore, if we include the

cases that only two ratings of a particular item exist, which

constitute an extreme situation, where only the DEPM will

be given in the prediction formulation (since the rating with

the earliest timestamp belongs to the item’s EEP, while the

other rating belongs to its relative LEP), the overall prob-

lematic cases are calculated at 10–25% in each of the

Amazon datasets, making these datasets untrustworthy for

evaluation. Hence, in order to eliminate these cases, the

5-core datasets were used (where for each rating to be
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predicted, there are at least 4 more ratings on this item,

enough for the EEP and LEP to be successfully set). It is

worth noting that in the experiments reported for the

CFCIRPaC algorithm [9], the datasets were preprocessed to

remove users having less than 10 ratings each, while this

practice was also used for the experiments performed for

the evaluation of the CFEA algorithm [51].

The seven datasets used in our experiments are sum-

marized in Table 2, while they also exhibit the following

properties:

1. They contain each rating’s timestamp, the existence of

which is essential for the operation of the CFEPC
algorithm,

2. They are contemporary (published between 1996 and

2019),

3. They are widely used as benchmarking datasets in CF

research and

4. They differ in regard to the category of product domain

of the dataset (books, music, food, videogames, etc.)

and size (ranging from 1.4 MB to 216 in plain text

format).

For our experiments, we used a laptop equipped with an

Intel N5000 @ 1.1 GHz CPUs with 8 GB of RAM and a

256 GB SSD with a transfer rate of 560MBps, which

hosted the seven datasets, used in our work, and ran the

rating prediction algorithms.

4.1 Determining the algorithm’s parameters

The goal of the first experiment is to determine the optimal

values for parameters EEPT, LEPT, CEPB, and DEPM,

used in the CFEPC algorithm. In order to find the optimal

setting for the aforementioned parameters, we explored

different combinations of values for them. In total, more

than 50 candidate setting combinations were examined;

however, for conciseness purposes, we report only on the

most indicative ones. More specifically, for each setting

combination, we present the prediction accuracy

improvement achieved, in terms of the MAE and the

RMSE scores.

It has to be mentioned that the results were found to be

relatively consistent across the seven datasets tested (in the

majority of the combinations tested, the ranking of

parameter value combinations was the same across all

datasets); hence, in this subsection, we only present the

average values of the respective error metrics for all

datasets.

Figure 1 illustrates the rating prediction error reduction

(using both the MAE and the RMSE error metrics) under

different parameter value combinations when similarity is

measured using the PCC similarity metric.

In Fig. 1, we can observe that the setting where

EEPT = 50%, LEPT = 50% (meaning that no ‘‘neutral’’

period will be set), CEPB = 0.6, and DEPM = 0.6 is the

one achieving the largest prediction error reductions, for

both error quantification metrics (MAE and RMSE). In

more detail, the MAE drops by 5.81%, on average, and the

RMSE is reduced by 5.04%. It has to be mentioned that this

setting has proven to be the optimal one, in all datasets

tested, among the eight settings illustrated in Fig. 1 (this is

also true among settings that were tested but not shown). In

the three last settings depicted in Fig. 1, EEPT and LEPT

are both set to 1.0 and 0, respectively, and therefore all

ratings and predictions are artificially considered as

‘‘early,’’ and therefore the CEPB bonus is added to all

predictions; however, the value of the bonus depends on

the distance between the user’s mean normalized experi-

ence time and the prediction’s normalized time: when this

distance is zero (i.e., the rating prediction is computed at

exactly the time point that the user experiences items, on

average), the bonus takes its maximum value (0.5, 0.7 and

1.0, for each of the three cases, respectively). Conversely,

when the distance increases, the value of the bonus is

Table 2 Datasets summary

Dataset name #Users

(K)

#Items

(K)

#Ratings Avg.#Ratings/

User

Density

(%)

DB size (in text

format) (MB)

Amazon ‘‘Video-games’’ [47, 48] 24 11 232 K 9.7 0.089 5

Amazon ‘‘CDs and Vinyl’’ [47, 48] 75 64 1.1 M 14.7 0.023 25

Amazon ‘‘Movies and TV’’ [47, 48] 124 50 1.7 M 13.7 0.027 40

Amazon ‘‘Books’’ [47, 48] 604 368 8.9 M 14.7 0.004 216

Amazon ‘‘Digital Music’’ [47, 48] 5.5 3.5 65 K 11.8 0.327 1.4

MovieLens ‘‘Latest 100 K—Recommended for education

and development’’ [49, 50]

670 9 100 K 166 1.85 2.2

MovieLens ‘‘Latest 20 M—Recommended for new

research’’ dataset [49, 50]

138 27 20 M 144.9 0.537 486
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reduced and may even assume negative values (except for

the third case, where the value of CEPB is non-negative).

Similarly, when the CS similarity metric is used, the

exact same setting is the one that delivers the highest

reductions in prediction errors, again, for both MAE and

RMSE quantification metrics; using this setting, the

respective reductions are 5.64% and 4.98%, as shown in

Fig. 2.

When using the CS similarity metric, the setting where

the EEPT = 50%, the LEPT = 50%, the CEPB = 0.6, and

the DEPM = 0.6 is ranked again first in all seven datasets

tested, among the eight settings illustrated in Fig. 2 (this is

also true among settings that were tested but not shown).

4.2 Comparison with previous work

After having determined the optimal parameter values for

the operation of the CFEPC algorithm, we proceed in

evaluating the algorithm’s performance in terms of rating

prediction accuracy, using the seven datasets listed in

Table 2, using the performance of the plain CF algorithm

as a baseline. Besides obtaining absolute metrics regarding

improvements in the prediction accuracy achieved by the

CFEPC algorithm, presented in this paper, we compare its

performance against the performance of the CFCIRPaC and

the CFEA algorithms, introduced in [9, 10], respectively. As

noted above, both CFCIRPaC and CFEA (a) are state-of-the-

art algorithms targeting the improvement of rating pre-

diction accuracy in the context of CF, (b) do not need extra

information, regarding the users or the items (e.g., item

categories or user social relationships), and hence can be

applied in every CF-based RS, and (c) do not deteriorate

the prediction coverage (i.e., the cases for which a per-

sonalized prediction can be formulated).

In the following paragraphs, we report on our findings

regarding the aforementioned, using (1) a CF implemen-

tation, which employs the PCC user similarity metric, and

(2) a CF implementation, which employs the CS user

similarity metric.

4.2.1 Comparison using the PCC similarity metric

Figure 3 illustrates the improvement in the MAE achieved

by the CFEPC algorithm, when compared to the CFCIRPaC
[9] and CFEA [10] algorithms, taking the performance of

the plain CF algorithm as a baseline and using the PCC as

the similarity metric.

We can clearly notice that the CFEPC algorithm, pre-

sented in this paper, achieves an average prediction MAE
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Fig. 1 Prediction error reduction under different parameter value

combinations, when using the PCC as the similarity metric
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Fig. 2 Prediction error reduction under different parameter value

combinations, when using the CS similarity metric
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Fig. 3 MAE reduction achieved by the proposed algorithm, in

comparison to the CFCIRPaC [9] and CFEA [10] algorithms, when

using the PCC similarity metric
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reduction equal to 5.81%, exceeding by approximately

110% the mean improvement attained by the CFCIRPaC
algorithm [9], while the corresponding improvement

against the CFEA algorithm is approximately 75%. At the

individual dataset level, the performance edge of the pro-

posed algorithm against the CFCIRPaC algorithm ranges

from 66% (for the MovieLens 100 K dataset) to 190% (for

both the Amazon ‘‘Movies and TV’’ and the MovieLens

20 M datasets), while CFEPC outperforms the CFEA algo-

rithm by a margin ranging from 30% (for the MovieLens

100 K dataset) to 210% (for the Amazon ‘‘Videogames’’

dataset).

Figure 4 illustrates the respective improvement in the

RMSE achieved by the proposed algorithm, when com-

pared to the CFCIRPaC [9] and CFEA [10] algorithms, again

taking the performance of the plain CF algorithm as a

baseline and using the PCC as the similarity metric.

We can again notice that the CFEPC algorithm, presented

in this paper, achieves an average prediction RMSE

reduction equal to 5.04%, exceeding by 90% the perfor-

mance of the CFCIRPaC algorithm [9], on average; the

respective improvement against the CFEA algorithm is

70%. At the individual dataset level, the performance edge

of the proposed algorithm against the CFCIRPaC algorithm

ranges from 47% (for the MovieLens 100 K dataset) to

190% (for the MovieLens 20 M dataset), while addition-

ally CFEPC outperforms CFEA by a margin varying from

16% (for the MovieLens 100 K) to 110% (for the Amazon

Videogames dataset).

To validate the significance of the MAE and RMSE

reduction results, when using the PCC similarity metric, we

conducted a statistical significance test on the results

obtained for the three algorithms. First, an Anova analysis

was performed to establish statistical significance regard-

ing the performance of the three algorithms, while

subsequently post hoc Tukey HSD tests were applied to

establish statistical significance between the results of

CFEPC and the results of each of the other two algorithms.

The outcome of the statistical tests regarding the MAE and

RMSE metrics are depicted in Tables 3 and 4, respectively.

All p-values are less than 0.01, establishing statistical

significance regarding the observed differences of the

algorithms’ performance.

Figure 5 illustrates the percentage of cases where each

of the three algorithms considered in the evaluation

achieved the prediction closest to the real rating in each

dataset tested, using the PCC as the similarity metric. Note

that, in the case of a tie, i.e., when two (or all three)

algorithms formulate the closest prediction, both (or all,

respectively) algorithms are considered as achieving the

closest prediction, and hence the sum of the scores of the

three algorithms may exceed 100%.

The ‘‘Amazon Books’’ dataset exhibits a considerably

high number of ties, approximately equal to 35% of the

overall number of the rating predictions computed. This is

owing to the fact that the distribution of ratings in this

dataset is highly skewed, with 61.7% of the ratings being

equal to 5.0 (the maximum rating). Consequently, in many

cases two or more algorithms compute a rating prediction

equal to 5.0, resulting in a tie. Similar skewing is also

observed in all other Amazon-sourced datasets, however to

a lesser extent.

We can observe that the CFEPC algorithm, presented in

this paper, manages to formulate the closest prediction to

the real rating in 99.7% of the cases (ties included) across

all the datasets tested. The lowest score for the CFEPC
algorithm is 98.92%, observed in the MovieLens 100 K

dataset, while the highest score is 99.88%, observed for the

MovieLens 20 M dataset. The CFCIRPaC and the CFEA
algorithms achieve significantly lower scores, equal to

7.3% and 7.2%, respectively.

Figure 6 depicts the above-recommender-threshold F1-

measure values for the three algorithms considered in this

experiment, adapting the work in [45, 46]. In this experi-

ment, items for which the rating prediction was above the

threshold of 3.5/5 for the Amazon datasets, or 7/10 for the

MovieLens datasets were considered to be a recommen-

dation for the user; the information retrieval metrics pre-

cision, recall, and F1-measure were computed according to

Eqs. (11)–(13) [45]:

precision ¼ relevantItemsf g \ recommendedItemsf gj j
recommendedItemsf gj j

ð11Þ

recall ¼ relevantItemsf g \ recommendedItemsf gj j
relevantItemsf gj j ð12Þ
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Fig. 4 RMSE reduction achieved by the proposed algorithm, in

comparison to the CFCIRPaC [9] and CFEA [10] algorithms, when

using the PCC similarity metric
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F1�measure ¼ 2 � precision � recall
precisionþ recall

ð13Þ

In all cases, relevant items are considered to be those

that are known to be rated by the user above the threshold

(3.5/5 for the Amazon datasets or 7/10 for the MovieLens

datasets).

We can observe that the proposed algorithm achieves a

relative improvement of the F1-measure over both baseline

algorithms of approximately 24% in relative terms (or by

Table 3 Statistical tests regarding the MAE under the PCC similarity metric

Dataset name Anova

p-value
Post hoc Tukey HSD

Test

CFEPC versus CFCIRPaC
p-value

Post hoc Tukey HSD

Test

CFEPC versus CFEA
p-value

Amazon ‘‘Video-games’’ 4.23 9 10-6 0.0028 0.0026

Amazon ‘‘CDs and Vinyl’’ 4.56 9 10-6 0.0029 0.0034

Amazon ‘‘Movies and TV’’ 2.87 9 10-6 0.0013 0.0043

Amazon ‘‘Books’’ 4.01 9 10-6 0.0026 0.0045

Amazon ‘‘Digital Music’’ 4.68 9 10-6 0.0030 0.0053

MovieLens ‘‘Latest 100 K—Recommended for education and

development’’

4.87 9 10-6 0.0032 0.0059

MovieLens ‘‘Latest 20 M—Recommended for new research’’ dataset 2.96 9 10-6 0.0014 0.0056

Table 4 Statistical tests regarding the RMSE under the PCC similarity metric

Dataset name Anova

p-value
Post hoc Tukey HSD

Test

CFEPC versus CFCIRPaC
p-value

Post hoc Tukey HSD

Test

CFEPC versus CFEA
p-value

Amazon ‘‘Video-games’’ 4.89 9 10-6 0.0035 0.0025

Amazon ‘‘CDs and Vinyl’’ 4.76 9 10-6 0.0045 0.0035

Amazon ‘‘Movies and TV’’ 3.01 9 10-6 0.0015 0.0046

Amazon ‘‘Books’’ 3.96 9 10-6 0.0026 0.0047

Amazon ‘‘Digital Music’’ 4.97 9 10-6 0.0035 0.0059

MovieLens ‘‘Latest 100 K—Recommended for education and

development’’

6.02 9 10-6 0.0054 0.0072

MovieLens ‘‘Latest 20 M—Recommended for new research’’ dataset 2.43 9 10-6 0.0012 0.0041
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Fig. 5 Closest predictions to the real rating percentage achieved by

the proposed algorithm, in comparison to the CFCIRPaC [9] and CFEA
[10] algorithms, when using the PCC similarity metric
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Fig. 6 F1-measure values for the predictions formulated, achieved by

the proposed algorithm, in comparison to the CFCIRPaC [9] and CFEA
[10] algorithms, when using the PCC similarity metric
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9.9% in absolute figures). At the individual dataset level,

the improvement ranges from 2% (absolute figures) for the

Amazon Books dataset to 20% (absolute figures) for the

MovieLens 100 K and the MovieLens 20 M datasets.

4.2.2 Comparison using the CS similarity metric

Figure 7 illustrates the improvement in the MAE achieved

by the proposed algorithm, when compared to the CFCIRPaC
and CFEA algorithms, again taking the performance of the

plain CF algorithm as a baseline, however this time using

the CS as the similarity metric.

We can clearly notice that the CFEPC algorithm, pre-

sented in this paper, achieves an average prediction MAE

reduction equal to 5.64%, exceeding by 124% the perfor-

mance of the CFCIRPaC algorithm, on average. In relation to

the CFEA algorithm, the CFEPC algorithm achieves an MAE

reduction higher by approximately 100%. At individual

dataset level, the performance edge of the proposed algo-

rithm against the CFCIRPaC algorithm ranges from 70% (for

the MovieLens 100 K dataset) to 275% (for the MovieLens

20 M dataset); the corresponding performance edge for the

CFEA algorithm ranges from 55% (for the MovieLens

100 K dataset) to 155% (for the Amazon ‘‘CDs and Vinyl’’

dataset).

Figure 8 illustrates the respective improvement in the

RMSE achieved by the proposed algorithm, when com-

pared to the CFCIRPaC and the CFEA algorithms, again

taking the performance of the plain CF algorithm as a

baseline and using the CS as the similarity metric.

The CFEPC algorithm, presented in this paper, achieves

an average prediction RMSE reduction equal to 4.98%,

exceeding the performance of the CFCIRPaC and the CFEA
algorithms by 120% and 90%, respectively. At the indi-

vidual dataset level, the performance edge of the proposed

algorithm against the CFCIRPaC algorithm ranges from 47%

(for the MovieLens 100 K dataset) to 290% (for the

MovieLens 20 M dataset); the respective performance edge

of the CFEPC algorithm against the CFEA algorithm ranges

from 40 (for the Amazon ‘‘Digital Music’’ dataset) to 165%

(for the Amazon ‘‘CDs and Vinyl’’ dataset).

To validate the significance of the MAE and RMSE

improvement results, when using the CS similarity metric,

we conducted a statistical significance test on the results

obtained for the three algorithms. Similarly to the case of

the PCC (c.f. Sect. 4.2.1), first, an Anova analysis was

performed to establish statistical significance regarding the

performance of the three algorithms, while subsequently

post hoc Tukey HSD tests were applied to establish sta-

tistical significance between the results of CFEPC and the

results of each of the other two algorithms. The outcome of

the statistical tests regarding the MAE and RMSE metrics

is depicted in Tables 5 and 6, respectively. All p-values are

less than 0.01, establishing statistical significance regard-

ing the observed differences of the algorithms’

performance.

Figure 9 illustrates the percentage of cases where each

of the three algorithms considered in the evaluation

achieved the prediction closest to the real rating in each

dataset tested, using the CS as the similarity metric. Note

that, in the case of a tie, i.e., when two (or all three)

algorithms formulate the closest prediction, both (or all,

respectively) algorithms are considered as achieving the

closest prediction and hence the sum of the scores of the

three algorithms may exceed 100%.

We can clearly notice that the CFEPC algorithm, pre-

sented in this paper, manages to formulate the closest

prediction in 99.8% of the cases (ties included) across all

the datasets tested, in contrast with both of the CFCIRPaC
and the CFEA algorithm, whose closest prediction cases are
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Fig. 7 MAE reduction achieved by the proposed algorithm, in

comparison to the CFCIRPaC [9] and CFEA [10] algorithms, when

using the CS similarity metric
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Fig. 8 RMSE reduction achieved by the proposed algorithm, in

comparison to the CFCIRPaC [9] and CFEA [10] algorithms, when

using the CS similarity metric
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12.5% and 12.8%, respectively. The lowest score for the

CFEPC algorithm is 98.93%, observed in the MovieLens

100 K dataset, while the highest score is 99.99%, observed

for the Amazon ‘‘CDs and Vinyl’’ and the Amazon

‘‘Movies and TV’’ datasets. The CFCIRPaC and the CFEA

algorithms achieve significantly lower scores, equal to

12.45% and 12.82%, respectively. Again, we can observe

that in all Amazon datasets a high number of ties occurs,

owing to the data skew present in the datasets, as detailed

in Sect. 4.2.1.

Table 5 Statistical tests regarding the MAE under the PCC similarity metric

Dataset name Anova

p-value
Post hoc Tukey HSD

Test

CFEPC versus CFCIRPaC
p-value

Post hoc Tukey HSD

Test

CFEPC versus CFEA
p-value

Amazon ‘‘Video-games’’ 4.58 9 10-6 0.0029 0.0025

Amazon ‘‘CDs and Vinyl’’ 2.71 9 10-6 0.0024 0.0018

Amazon ‘‘Movies and TV’’ 1.46 9 10-6 0.0003 0.0029

Amazon ‘‘Books’’ 4.03 9 10-6 0.0028 0.0032

Amazon ‘‘Digital Music’’ 3.02 9 10-6 0.0030 0.0053

MovieLens ‘‘Latest 100 K—Recommended for education and

development’’

4.76 9 10-6 0.0031 0.0056

MovieLens ‘‘Latest 20 M—Recommended for new research’’ dataset 1.22 9 10-6 0.0003 0.0028

Table 6 Statistical tests regarding the RMSE under the PCC similarity metric

Dataset name Anova

p-value
Post hoc Tukey HSD

Test

CFEPC versus CFCIRPaC
p-value

Post hoc Tukey HSD

Test

CFEPC versus CFEA
p-value

Amazon ‘‘Video-games’’ 4.08 9 10-6 0.0029 0.0028

Amazon ‘‘CDs and Vinyl’’ 2.57 9 10-6 0.0017 0.0016

Amazon ‘‘Movies and TV’’ 1.23 9 10-6 0.0004 0.0027

Amazon ‘‘Books’’ 2.99 9 10-6 0.0027 0.0053

Amazon ‘‘Digital Music’’ 4.81 9 10-6 0.0033 0.0078

MovieLens ‘‘Latest 100 K—Recommended for education and

development’’

6.21 9 10-6 0.0060 0.0082

MovieLens ‘‘Latest 20 M—Recommended for new research’’ dataset 1.26 9 10-6 0.0003 0.0028
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Fig. 9 Closest predictions percentage achieved by the proposed

algorithm, in comparison to the CFCIRPaC [9] and CFEA [10]

algorithms, when using the CS similarity metric
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Fig. 10 F1-measure values for the predictions formulated, achieved

by the proposed algorithm, in comparison to the CFCIRPaC [9] and

CFEA [10] algorithms, when using the CS similarity metric
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Finally, Fig. 10 depicts the above-recommender-

threshold F1-measure values for the three algorithms con-

sidered in this experiment, following the same methodol-

ogy described in Sect. 4.2.1. We can observe that the

proposed algorithm achieves a relative improvement of the

F1-measure over both baseline algorithms of approxi-

mately 18.5% (7.7% in absolute figures). At the individual

dataset level, the improvement ranges from 2% (absolute

figures) for the Amazon Books and the Amazon ‘‘Digital

Music’’ datasets to 20% (absolute figures) for the Movie-

Lens 100 K and the MovieLens 20 M datasets.

Overall, the previous experiments clearly indicate that

the presented CFEPC algorithm surpasses the performance

of both the CFCIRPaC [9] and CFEA algorithms [10], in all

datasets and under both similarity metrics. It is worth also

noting that the CFCIRPaC algorithm presented in [9] and the

CFEA algorithm [10] have both been shown to surpass the

performance of other state-of-the-art algorithms, such as

the ones in [26, 28].

5 Conclusions and future work

In this paper, we have presented a novel CF algorithm,

namely CFEPC, which considers the information of the

users’ Experiencing Period in the CF prediction process, in

order to improve rating prediction accuracy.

The proposed algorithm exhibits promising results and

outperforms recently published algorithms. This is

achieved through the amplification of the prediction value

when both the user’s usual experiencing time and the time

of the rating to be predicted belong to the same experi-

encing period (Early or Late) of the item and, conversely,

reduces it when they belong to different experiencing

periods. The rationale behind the usage of the aforemen-

tioned information is that when a user U usually prefers to

wait for a period of time before experiencing items (until a

satisfactory amount of feedback becomes available for the

item of interest), it is essential for an RS to align to this

practice and not recommend to him brand new products,

which have just been released, but rather recommend

products that have been in the market for a suitable amount

of time. And, similarly, when a recommendation is offered

to an ‘‘early adopter’’ user, the RS should include in this

recommendation ‘‘fresh’’ products, rather than products

that the user will consider as outdated.

The presented algorithm has been experimentally vali-

dated through a set of experiments, using two user simi-

larity metrics and seven datasets of multiple domains

(books, music, food, etc.) and the evaluation results have

shown that the inclusion of the experiencing period crite-

rion introduces significant prediction accuracy gains.

More specifically, the experimental results have shown

that the CFEPC algorithm achieves a considerable MAE

reduction of 5.8%, on average (ranging from 1.4% to

10.2%), when selecting the PCC similarity metric, and an

MAE reduction of 5.64% on average (ranging from 1.45%

to 10.46%) when selecting the CS similarity metric. The

respective average RMSE reductions found to be 5.04%

(ranging from 1.28% to 8.15%), when selecting the PCC

similarity metric, and 4.98% (ranging from 1.36% to

8.77%), when selecting the CS similarity metric (in all the

aforementioned percentages, the plain CF algorithm was

used as a baseline).

We have also compared the performance of the CFEPC
algorithm against two recently published (2019) state-of-

the-art algorithms, which also target at prediction error

reduction by considering item experiencing times, namely

the CFCIRPaC [9] and the CFEA [10] algorithms. The pro-

posed algorithm has exhibited superior performance

against both algorithms included in the comparison, in all

cases, managing to formulate the closest prediction in

99.7% of the cases (ties included) across all the datasets

tested.

More specifically in the comparison against the

CFCIRPaC algorithm [9], the CFEPC algorithm, proposed in

this work, has proved to consistently outperform the

CFCIRPaC algorithm across all datasets tested, achieving an

average MAE reduction across all datasets 110% higher

than the reduction attained by the CFCIRPaC algorithm,

under the PCC similarity metric; the corresponding per-

formance edge against the CFEA algorithm is 75%. The

CFEPC algorithm has been found to perform better that the

CFCIRPaC and the CFEA algorithms in each individual test

made, i.e., for every combination of test dataset, prediction

error measure, or similarity metric.

Furthermore, statistical significance testing, across all

datasets, between the CFEPC algorithm, presented in this

paper and each one of the two aforementioned algorithms,

indicated that the proposed algorithm is shown to be sta-

tistically significant with a confidence interval of 95% with

both the CFCIRPaC and CFEA algorithms, under both simi-

larity metrics.

Lastly, we evaluated the proposed algorithm using the

F1-measure, typically employed to assess recommendation

quality, and the CFEPC algorithm was found to achieve an

overall F1-measure score of 0.486, when using the PCC

similarity metric, and an overall F1-measure score of

0.489, when using the CS similarity metric, surpassing the

performance of both baseline algorithms.

It is worth noting that the CFEPC algorithm can be

combined with an already implemented CF-based recom-

mender system, since (1) it is easy to be implemented,

through the modification of existed CF-based RSs, (2) it

needs no extra information about neither the users nor the
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items, (3) it needs minimal additional dataset pre-pro-

cessing time, computing only each items’ first and last

rating times, as well as each user’s usual-average rating

time, and minimal extra storage space, storing the afore-

mentioned information, and (4) it can be easily combined

with other algorithms that have been proposed for

improving rating prediction accuracy, coverage, computa-

tional efficiency or recommendation quality (e.g.,

[52, 11, 12, 5, 6, 18–20]).

Our future work will focus on further studying the users’

usual experiencing phases in rating prediction computation,

as well as exploring alternative algorithms for reducing

prediction error in CF datasets. Furthermore, we are plan-

ning to evaluate the algorithms’ performance under more

user similarity metrics, such as the Spearman coefficient

and the Euclidean distance [53–55], where those are pro-

posed by the literature as more suitable for either the item

category or the additional information. Adaptation of the

proposed algorithm for use with MF approaches [56–58] is

also considered.

Finally, the combination of the proposed method with

other algorithms, such as algorithms who exploit social

network information [59–61] and IoT information [62–64],

where available, for further improving the quality of rec-

ommendations formulated.
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